21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,应用非常广泛。

硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场主要是非晶硅薄膜电池产品。非晶硅的禁带宽度为1.7eV,通过掺硼或磷可得到p型或n型a-Si。为了提高效率和改善稳定性,还发展了p-i-n/p-i-n双层或多层结构式的叠层电池。

碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单,制造成本低,实验室转换效率已超过16%,大规模效率超过12%,远高于非晶硅电池。不过由于镉元素可能对环境造成污染,使用受到限制。近年来美国FirstSolar公司采取了独特的蒸气输运法沉积等特殊措施,解决了污染问题,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW碲化镉太阳电池组件。

铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等方法,在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。基底一般用玻璃,也可用不锈钢作为柔性衬底。实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。

砷化镓薄膜电池是在单晶硅基板上以化学气相沉积法生长GaAs薄膜所制成的薄膜太阳电池,其直接带隙1.424eV,具有30%以上的高转换效率,很早就被应用于人造卫星的太阳电池板。然而砷化镓电池价格昂贵,且砷是有毒元素,所以极少在地面应用。

染料敏化太阳电池是太阳电池中相当新颖的技术产品,由透明导电基板、二氧化钛(TiO2)纳米微粒薄膜、染料(光敏化剂)、电解质和ITO电极所组成。目前仍停留在实验室阶段,实验室最高效率在11%左右。

简介

CIGS是一种半导体材料,是在通常所称的铜铟硒(CIS)材料中添加一定量的ⅢA族Ga元素替代相应的In元素而形成的四元化合物。鉴于添加Ga元素后能适度调宽材料的带隙,使电池的开路电压得到提高,因此,近年来CIGs反而比CIS更受关注。

单晶硅、多晶硅以及非晶硅属于元素半导体材料,尤其单晶硅,在电子、信息科学领域占据着不可撼动的地位,作为硅太阳电池,只是它诸多的重要应用之一。与硅系太阳电池在材料性质上有所不同的是:CIGS属于化合物半导体范畴。固体物理学的单晶硅金刚石型晶体结构和cIGs黄铜矿型晶体结构如下图所示。

在化合物半导体系列太阳电池家族中,某些成员也有不凡表现,如砷化镓(GaAs)太阳电池,其最高的光电转换效率使其他类型的太阳电池难以望其项背。然而,其高昂的制备成本使其只能应用于高层次的不计工本的特殊场合,如太空、军事领域。在各领风骚的太阳电池阵容中,CIGS太阳电池以其特性方面的闪光点脱颖而出。

性能特点

用来制备CIGS太阳电池的材料是多晶态。一般多晶材料的制备难度和成本都低于单晶材料,这一点对产业化和民用化具有重要意义。理论和试验结果都证实,制备CIGS电池器件工艺中,对成分配比的离散相对有较大的宽容度,对材料纯度和制备温度的要求也低于常规晶态的半导体工艺。这为工业化制备的良品率和制备成本的优化提供了较大的空间。

用半导体专业语言来讲,CIGS是一种直接带隙材料,对可见光的吸收系数高达105(cm-1),优于其他电池材料。对比图2中的各种薄膜电池材料吸收系数的曲线,可知CIGS材料的吸收系数最高。CIGS薄膜电池的吸收层仅需1~29m厚,就可将阳光全部吸收利用。因此,CIGS最适合做薄膜太阳电池,其电池厚度薄且材料用量少,大大降低了对原材料的消耗,减轻了In等稀有元素的资源压力。

目前太阳电池家族中,尚存在几种不同材料类型的薄膜电池。如硅基薄膜电池、碲化镉薄膜电池等。但值得提出的是,在所有类型的薄膜太阳电池中,CIGS薄膜太阳电池的光电转换效率在理论上和实际上都是最高的,迄今实验室最高效率已超过20%,仍没封顶。

电池的稳定性是描述电池使用价值的另一个非常重要的指标,尤其对电站来讲,是首要指标,同时也直接影响到电池的能量回收水平及使用寿命的长短。有试验证明,CIGS薄膜电池组件在户外条件下使用,历时三年之久,性能没有衰减,并非每种太阳电池都能有这种出色的表现,见下图。

弱光发电性能不容忽视。太阳的光强有四季、早晚、阴晴的变化。因此,我们不仅要重视太阳电池在强光下的峰值发电能力,更要关注一天或一年时段中的累计发电量,即追究太阳电池的弱光发电能力。正是在这一指标上,与不同类型太阳电池相比,CIGS太阳电池有着突出的表现。在晨昏时节、阴天冬季,仍具有相当的发电能力。

CIGS材料的Cu迁移和点缺陷反应的动态协同作用导致受辐射损伤的电池具有自愈合能力,这就保证了CIGS太阳电池在强辐射下的良好反应。如同摆擂台一样,将几种太阳电池置于1MeV电子辐照下,结果屉示,大多数电池输出功率明显衰退时,C1S(CIS在此可代表CIGS)电池却无任何衰减(见下图)。在领取用作空间电源的通行证的竞争中,CIGS太阳电池顺利过

CIGS薄膜太阳电池组件因其黑亮沉穆的色泽备受赞叹(因其极高的吸收系数)。无论作为屋顶或幕墙,CIGS薄膜电池无疑是功能建筑一体化的最佳选择,作为发电功能与装饰效果的完美组合,CIGS独具风格。

带隙可依性能要求调节,这为高性能的叠层电池奠定了基础。CIGS材料晶型为黄铜矿结构。通过调节材料的成分及其配比,CIGS有多种结构。例如不掺Ga的CIS三元化合物材料做成的太阳电池,其材料的半导体禁带宽度是1.04eV;如用适量的Ga取代In,成为四元化合物(CIGS),其禁带宽度可在1.04~1.67eV范围内连续调整。优点:可根据与太阳光谱匹配的要求来调整最佳带隙(1.5eV);容许材料成分配比有一定的偏差和漂移,而不丧失器件的光伏性能。尤其在产业化工程中,可提高工艺条件的宽容度和良品率的保证。

CIGS材料的光吸收系数最高,吸收层可做得很薄。实际上CIGS薄膜电池各层叠加起的总厚度<4μm,具有充分的柔软性。沉积在金属箔或高分子塑料薄膜上,就成为可折叠、弯曲的柔性电池。

柔性电池用途更加广泛与方便,可用于帐篷、屋顶、探测气球及各种异型表面,尤其适合便携和随机使用。在同样的发电能力下,CIGS薄膜电池重量最轻。

各种类型太阳能电池技术与效率比较
理论效率与目前实验室效率、商业效率之间的比较
不同衬底类型薄膜电池与组件效率比较注:以上数据来源于2012年太阳能光伏技术发展及应用研讨会,上海空间电源研究 所《铜铟镓硒薄膜太阳电池技术研究》。
产业化进展及发展趋势
新进机构:如杜邦、IBM、Intel、陶氏化学、Bosch、台积电,……
注:以上数据来源于2012年太阳能光伏技术发展及应用研讨会,上海空间电源研究所《铜铟镓硒薄膜太阳电池技术研究》。
(1)进一步提升性能。
(2)降低成本。
(3)加快发展柔性CIGS技术,保持薄膜电池领域竞争优势。
国内研究现状

目前国内有多家高校、研究所、企业在进行CIGS薄膜太阳能电池的研究,包括南开大学、上海空间电源研究所,中电18所、山东孚日等。一些新 进的机构包括广东榕泰、深圳浩德,中科院太阳能研发中心等。对于国内CIGS技术研发和产业化发展的要求是,需要系统化、深入化,并寻求突破和 发展。相信随着科技的不断进步和发展,国内CIGS的相关研发及应用会迈上一个新的台阶。

砷化镓简介

砷化镓(GaAs)半导体材料与传统的硅材料相比,它具有很高的电子迁移率、宽禁带、直接带隙,消耗功率低的特性,电子迁移率约为硅材料的5.7倍。因此,广泛应用于高频及无线通讯中制做IC器件。所制出的这种高频、高速、防辐射的高温器件,通常应用于激光器、无线通信、光纤通信、移动通信、GPS全球导航等领域。砷化镓除在IC产品应用以外,也可加入其它元素改变能带隙及其产生光电反应,达到所对应的光波波长,制作成光电元件。还可与太阳能结合制备砷化镓太阳能电池

砷化镓薄膜电池聚光跟踪发电系统的基本构想

在薄膜光伏电池中,非晶硅电池效率低下,且稳定性有待提高。尽管硫化镉、碲化镉薄膜电池的效率较非晶硅薄膜电池效率高,成本较晶体硅电池低,且易于大规模生产,但是镉有剧毒,会对环境造成严重污染,硒和铟是储量很少的稀有元素,因此大规模发展必将受到材料制约。而砷化镓化合物材料具有十分理想的禁带宽度以及较高的光吸收效率,适合于制造高效电池。此外,还可以通过叠层技术做成多结砷化镓基电池,以进一步提高转换效率。但是,由于砷化镓基材料价格昂贵,砷化镓薄膜电池目前只在航天等特殊领域应用,离地面应用的商业化运行还有很大距离。

为了降低光伏电池的发电成本,可采取的有效途径之一就是研发和应用砷化镓薄膜电池聚光发电系统。在获得同样输出功率情况下,可以大大减少所需的砷化钾薄膜电池面积。相当于用比较便宜的普通金属、玻璃材料做成聚光器和支撑系统,来代替部分昂贵的砷化镓薄膜电池。在这种聚光系统中,如果聚光率超过10倍以上,则系统只能利用直射阳光,因而必须采用跟踪系统相互配合,才能充分发挥效能。在固定温度下,光伏电池效率随聚光率变化的一般趋势是,在低聚光率时,电池效率随聚光率的增加而增加,在高聚光率时,则随聚光率的增加而降低。光伏电池在高聚光大电流下,其工作温度的升高将导致效率的下降,因此,聚光跟踪系统还需要配备有效的散热设备。考虑到系统的整体经济性,可以通过主动制冷方式,在对光伏电池快速散热的同时,充分利用热能生产热水,最终实现实现太阳能光热和光伏的综合利用,以充分发挥整体效能。

砷化镓薄膜电池聚光跟踪发电系统的组成

市场上的聚光光伏电池系统组件大部分仍采用单晶硅太阳能电池,基于砷化镓基多结太阳能电池的产品在国际市场上刚刚崭露头角,尚未进入国内市场。高效太阳能电池是聚光光伏、光热综合利用系统的核心部件。在500-1000倍的高倍聚光条件下,其芯片和模组制作工艺都与低倍聚光下不同,需要重新设计工艺条件。在适合高倍聚光的光伏电池工艺中应充分借鉴激光器、发光二极管等器件的先进设计方法。采用低成本、高热稳定性的不含金的合金作为III-V聚光光伏电池顶部网格电极材料,通过优化电极结构和制作工艺,在不改变电池外延结构的条件下,开发出500至1000倍聚光下高效多结光伏电池低成本产业化生产工艺,使光电转换效率达到30%,并获得较高的工作稳定性。

由于高效砷化镓光伏电池的生产成本较高,因此提高聚光器的聚光倍数、聚光效率和均匀性成为充分发挥砷化镓光伏电池效率优势、降低聚光光伏、光热综合利用系统成本的关键之一。光伏聚光器是利用透镜或反射镜将太阳光聚焦到光伏电池上。按光学类型划分,常用的聚光系统通常分为折射聚光系统和反射聚光系统。对于实际应用来说,菲涅尔透镜成为理想之选。它的聚焦方式可以是点聚焦,也可以是线聚焦。点聚焦时,将太阳光聚焦在一个光伏电池片上;线聚焦时,将太阳光聚焦在 光伏电池组成的线列阵上。反射式聚光系统也可以分为点聚焦结构和线聚焦结构。但是传统菲涅尔透镜存在难以实现的高接收角、聚光后光强分布不均匀和易老化变形等问题。而反射式聚光器聚光倍数较低,难以大幅度降低发电成本。

对于砷化镓薄膜电池聚光跟踪发电系统来说,对日跟踪器必不可少。这主要是由于随着聚光比的提高,聚光光伏系统所接收到光线的角度范围就越小,为了更加充分地利用太阳光,聚光光伏系统必须辅以对日跟踪装置。因此,通过对聚光光伏系统跟踪信号的产生、自动控制的机理、驱动执行部分的实现以及保护应急措施的考虑,研究出跟踪精度高、运行安全可靠、抗干扰能力强、制造和运用成本低、用户操作界面友好的太阳能跟踪器,对于成功开发砷化镓薄膜电池聚光跟踪发电系统是至为重要的。目前,对日跟踪器的设计方案众多,形式不拘一格。点聚光结构的聚光器一般要求双轴跟踪,线聚光结构的聚光器仅需单轴跟踪。由于砷化镓薄膜电池 聚光跟踪发电系统不得不经受安装地区恶劣的气候条件,如风、沙、冰雹、雨、雪等的侵蚀和损坏,因此,跟踪系统的可靠性仍需进一步的提高。

温度是影响太阳能电池光电转换效率的重要因素之一。聚光太阳电池在运行过程中,未被利用的太阳辐射能除一部分被反射外,其余大部分被电池吸收转化为热能。如果这些吸收的热量不能及时排除,电池温度就会逐渐升高,发电效率降低,而且电池长期在高温下工作还会因迅速老化而缩短使用寿命。因此,为了实现对电池组件的温度控制,可采用无机超导热管技术。即以多种无机元素组合而成的传热介质,加入到管腔或夹壁腔内,经真空处理且密封后形成具有高效传热特性的元件。该 元件将热量由一端向另一端快速传导的过程中,表面呈现出无热阻快速波状导热特性。它既可保证聚光光伏电池的光电转换效率,同时又能获得相当可观的光热收益,实现对太阳能的电热联用,以满足普通用户日常生活用电和热水。

砷化镓薄膜电池聚光跟踪发电系统的开发意义

在各国政府的大力支持下,以及光伏市场的需求和聚光光伏技术迅猛提高的趋势下,高效、低廉、可靠、稳定的聚光光伏发电系统正在逐步走向产业化。在国际光伏市场巨大潜力的推动下,中国作为世界能源消耗第二大国,对于高效、低成本的光伏发电系统的需求更为迫切。与国际上蓬勃发展的光伏发电相比,国内平板式光伏发电系统技术已经比较成熟,而聚光光伏发电系统还处于技术开发阶段。只要我们抓住有利时机,瞄准国际光伏电池新材料及器件研究的前沿,积极引进和开发成熟砷化镓薄膜电池聚光跟踪发电系统,就能在聚光光伏技术及应用方面取得原创性的、突破性的进展。


砷化镓薄膜电池聚光跟踪发电系统是一个技术水平高、涉及学科多、带动作用强的综合产业。在这个产业链上,包括了研制系统所需要的钢材、玻 璃、塑胶材料等产业;包括了与聚光器、跟踪器所密切相关的精密仪器加工和自动控制等产业;包括了与高效太阳能电池相关的关键设备制造、III-V族半导体材料外延和器件制作等产业,包括了与太阳能光热利用相关的传热、水箱、管道等产业,还有相关的蓄电池、逆变器和控制器等产业。因此,通过研发砷化镓薄膜电池聚光跟踪发电系统,能够带动相关产业的迅速发展,提高相关产业的整体研发水平,同时创造更多的就业岗位。


发展砷化镓薄膜电池聚光跟踪发电系统,具有良好的节能减排、环境保护和推广应用等社会效益。同时,砷化镓薄膜电池聚光跟踪发电系统的研发和推广,必将对普及太阳能知识,增强全社会对新能源的认识,加快新能源的推广、应用和普及步伐,产生积极而又深远的影响。

Solarzoom光伏太阳能网出品

本期责编:刘路

联系方式:liulu@solarzoom.com